
Web Presentation

Patterns (controller)

SWEN-343

From Fowler, Patterns of Enterprise

Application Architecture

Objectives

Look at common patterns for designing

Web-based presentation layer behavior
• Model-View-Control

• Handling user input in HTTP request

• Delegating to domain layer for application processing

• Constructing HTML response stream

• Separating and coordinating these concerns in rich

client applications with complex behavior

Web Presentation Layer Patterns

Model-View-Controller

Input Controller
• Page Controller

• Front Controller

Application Controller

View
• Template View

• Transform View

• Two Step View

Note: some of the following slides on

presentation layer patterns are from a

presentation by Martin Fowler. Previously

accessible on the web.

Concerns

Handling stateless HTTP requests, network connections, etc.

• Scripts?

Creating complicated HTML response streams

• Server pages?

When there are complicated decisions based on input (such as

display formats and what content to send next) and application

state (what is happening in the underlying domain layer?)

Separate user interface from application behavior

Model View Controller

Model

The domain objects

View

Presents information to user

(Input) Controller

Handles user input

1. Separation of Presentation (View/Controller)

from Domain (Model)

2. Separation of View and Controller

- Sometimes not necessary to separate

Domain Layer

Presentation

Layer

MVC in a Web Server

There are many different meanings of

“controller” in different contexts

In the context of Web applications, many

people get the “Control” of MVC wrong

MVC in a Web Server – Basic Concept

Controller handles the request

Controller gets the model

to do the domain logic

Controller gets the view to

create a response based

on the model (and data

shared in session)

Based on model/domain results and user

session state, controller selects next view

Can share data

via session

Web server forwards request to

registered class (note: asynchronous)

(Input) Controller

 An HTTP request comes into the input controller

 It pulls information off of the request

 It forwards the business logic request to an appropriate
model object

 The model object talks to the data source and other domain
layer objects and does everything indicated by the request
as well as gather information for the response

 When the model object is done, it returns control to the input
controller

 The input controller looks at the results and decides which
view is needed to display the response

 The input controller passes control, together with the
response data, to the view

Often the response data is left in an agreed location, such as an HTTP session
object

MVC Structure in Java EE
• Application Tier (EJBs, POJOs, etc.)

• The Web Tier will have servlets, Java

Beans, POJOs, etc. that are proxies for or

adapters to the underlying application tier

JSPs

and

static

HTML/

XML

• Servlets

• Centralized

controller object

• Such as Front

Controller for

screen flow

manager

1

2
3

4

5

Input Controllers
 Input controller responsibilities

Handle the HTTP request
Decide what to do with it
Delegate to model objects to actually do the work
Select next view and pass control to view

 Example: Server page handles request, then delegates to a
separate helper object to decide what to do with it

 Example: Front controller is a single object that handles all
requests
Interprets the URL to figure out what kind of request it is dealing with,
then creates a separate object to process it

Page Controller Input Controller

One controller per Web page
May be a server page that combines view and control

(but should separate view and control in the page code)

Input controller creates appropriate models to do the

processing, then instantiates a view to return the result

One controller per action (action: a button or

navigation link)

Page Controller Input Controller

-- handle http get

and post

-- decide which

model and view to

use

Page Controller -- domain logic

Model

-- display HTML

View

Example: Servlet Controller, JSP View

See pattern

discussion in Fowler

for various

implementation

approaches in Java

JSP/Servlets and C#

Code Behind

Front Controller Input Controller

Consolidate control behavior
All request handling is channeled through a single

handler object

Removes duplicate behavior, such as security or

internationalization, spread across multiple page

controllers

Front Controller Input Controller

 Commands can be plain old objects

 Combine with Intercepting Filter pattern (Decorators) to wrap the handler with a filter

chain to handle authentication, logging, locale identification, etc.

doGet

doPost

Handler

process

Abstract

Command

process

Concrete

Command 1

process

Concrete

Command 2

Front vs. Page Controllers

Page Controller

• Input controller per page is easy to

follow

• Don’t put controller logic in scriptlets

• Use separate class

Front Controller

• Single point for adding

behavior

• Can add behavior dynamically

without changing the Web

handler

Application Controllers

(Distinct from Input Controllers)

 Application controllers handle the flow of an application
Coordinate user conversation in a session with application flow

Input controllers ask the Application Controller for the appropriate commands for

execution against a model and the correct view to use depending on the application context

For example, manage complicated logic of screen flow and navigation

For example, when there is not a simple mapping between pages and actions in the domain

 Part of presentation layer or a separate layer that mediates between the

presentation layer and the domain layer

Application Controller

an input controller
an application

controller

request

get domain command

a domain

command

run

get view

a view

forward

A centralized point for handling screen navigation and flow of an

application

Application Controller: Dependencies

Input Controller

View

Application

Controller
Domain Layer

Note that, from the Input Controller’s perspective, the Application

Controller plays the role of Model in MVC

Is an Application Controller

Necessary?

A test for needing an application controller:

• If the user is in control of the order of screen navigation, you

don’t need an application controller

• If the computer is in control of the screen flow, you need an

application controller

“Model” in MVC and Application

Controllers and Input Controllers
• The most important reason to use MVC is to completely separate the model

(domain behavior) from the Web presentation

• Input controllers receive HTTP requests and decide what to do

• The model behavior (the “what to do”) can also be complicated, requiring

Application Controllers to handle the flow of an application and screen

navigation

• Handle the flow of user tasks (“dialog controller”), what screens should

appear, etc.

• Further, the Domain Layer can have application workflow controllers (use-

case controllers, business process choreography, transaction controllers,

etc.)

Input

Controller

Application

Controller

Business Process

Workflow

Controller

To Control or Not To Control? And Where?

 There will always be an input controller (at a minimum, to handle http

request)
Even if it is a scriptlet in a server page (which is a bad idea)

 Not all presentation layers need an application controller

 If the user does not need to see the flow of control among business

objects and/or external applications, provide a domain-layer control

separate from a presentation-layer application control

 Suggestion: Figure out what has to be controlled and provide a

separate object to control it
Be willing to provide multiple controllers across layers

Don’t get hung up on type(s) of control and which layer(s) are in control, and don’t be

overly constrained by the “assumed” model of your development tools and run-time

platform/container

Conclusions

 It is imperative to separate user interface (view, control)
from application (model)
Especially when the application behavior is executed in the
domain layer (as it should be!)

 Input Controller patterns and Application Controller
pattern help manage complicated user session flow
control and selecting and delegating to appropriate model
behavior
Domain layer may have additional controllers to manage the flow
of application logic, but these are independent of any presentation-
oriented controllers

Read the pattern documentation in Fowler for detailed
examples with code in Java and C#

